
56 The Delphi Magazine Issue 61

Design By Contract
by Sascha Frick

When we write new software,
we strive to reuse existing

code in the form of classes and
components. Delphi’s VCL con-
tains a rich set of ready-to-use
classes and many third-party ven-
dors offer additional components
for instant reuse.

While it is possible with Delphi
to write procedural programs, I
believe you are far better off using
Delphi’s object oriented features
as much as possible. With object
orientation, a class is either reused
by means of inheritance or by
means of aggregation. It has
become clear over the years that
the latter, being a black box
approach, is the preferred way of
reuse most of the time: using a
class as part of the implementation
details of another class to imple-
ment specific behaviour is far
easier to achieve than proper use
of inheritance. After all, all the
hype about components and reuse
stems from the idea of easy to use
pluggable software components to
build new systems by simply putt-
ing existing software pieces
together. Delphi itself uses this
sort of reuse most of the time.
When you place a TButton on a
form you are not subclassing a new
TButton class but are reusing the
existing TButton class as part of
your form.

While reusing classes by aggre-
gation is easier than by using inher-
itance, it is not a trivial matter! For
almost all components except the
most simple, we have to know a
great deal about the component
itself in order to be able to use it
effectively and correctly. Usually, a
good starting point for understand-
ing how to use a component is its
documentation. But, many times
even very good documentation
does not tell you everything you
need to know and you end up dig-
ging into the source code just to
find out how exactly things have to
be done in order to get the desired
results.

In other words: the component
you wish to use demands that you
(its client) meet certain obligations
in order for it to produce the
desired results. Now, wouldn’t it
be nice, if a component stipulated
your obligations for its use in a
clear and testable form, so you
could immediately see what your
job is in order for the component to
work as designed? That’s the basic
idea behind design by contract: the
client of a component and the
component itself form a contract
that states their mutual responsi-
bilities.

This design technique was intro-
duced by Bertrand Meyer and is a
key feature of his programming lan-
guage Eiffel, that supports design
by contract very elegantly. ‘Eiffel?’,
you may ask, ‘I don’t use Eiffel!’.
Don’t despair, we will see shortly
how we can benefit from using the
approach with our favourite devel-
opment tool. Fortunately, with the
advent of version 3, the designers
of Delphi added support for
assertions.

Assertions lie at the heart of
design by contract. An assertion is
a Boolean expression that is never
supposed to become False. If an
assertion does evaluate to False,
the assertion is said to have failed
which is considered a programmer
error worth raising an exception
for. Since all contracts are stipu-
lated in the form of one or more
assertions, a failed assertion is a
breach of contract. Usually,
assertions are only used during
testing and debugging and their
evaluation is disabled in the final
product. We will see in a moment
that Delphi offers excellent sup-
port for assertions ready for use!

So, how exactly does Delphi
support assertions? Starting with
version 3, there is a procedure
called Assert with the following
signature:

procedure Assert(expr : Boolean
[; const msg: string]);

The help file states: ‘Use Assert as
a debugging tool to test that
conditions assumed to be true are
never violated. [...] Assert takes a
boolean expression and an optional
message string as parameters. If the
boolean test fails, Assert raises an
EAssertionFailed exception.’

You can see that the use of
Assert fits nicely into our previous
definition of what an assertion is: a
Boolean expression that is
expected to always be True. We
also stated that a failed assertion
should raise an exception. And
that is exactly what happens when-
ever Assert is called with a expres-
sion that evaluates to False: we get
the special exception EAssertion-
Failed.

The second parameter to Assert
is an optional message string for
the exception. If you omit it, a
default message is used for that
purpose. The message is displayed
along with the filename (including
the complete pathname) and the
line number on which the Assert
failed. Delphi uses some compiler
magic to make the Assert
procedure work as intended, but
we will not bother to go into details
here.

We discussed earlier that Asser-
tions are usually only used during
testing and debugging and their
evaluation should be disabled in
the final product. As it turns out,
with Delphi you can do exactly
that. There is a compiler switch
that allows you to turn the genera-
tion of Assert code on or off:
$ASSERTIONS ON/OFF (long form) or
$C+/- (short form). Note that this
switch works at the complete
source file level. Therefore, it is not
possible to turn assertions on or
off for only a section of code in a
file. It is all or nothing!

Alternatively you can enable or
disable the creation of assertion
code for an entire project. Simply
go to the Project Options dialog.
On the Compiler tab there is the
Debugging section where you can
turn assertions on or off conve-
niently.

Normally, you switch assertions
on or off for an entire project,
especially when you are compiling
the final release build. But during

September 2000 The Delphi Magazine 57

testing and debugging it is some-
times helpful to be able to enable
or disable assertions for individual
source files. Be aware, though, that
the individual source file setting
overrides the project settings. So it
is always a good idea to remove
any {$C+} (or $ASSERTIONS ON, if you
prefer) from your source file, once
you don’t need it anymore.

Note that the possibility of
simply turning off the creation of
Assert code for the final product is
a big advantage. It allows you to
leave all the assertions in the
source code in place for testing
and documentation purposes,
while enabling you to remove them
from production code with a
simple rebuild of your project. So,
there is no excuse for not using
assertions! It won’t make your final
product run slower, but it can help
tremendously to run it more
reliably!

Assertions: Pre-Conditions,
Post-Conditions
With design by contract you
use three sorts of assertions: pre-
conditions, post-conditions and
invariants. Both pre- and post-
conditions operate on the method
level. A post-condition describes
the world after the execution of a
method. Or, in other words, a
post-condition states what results
you may expect from a method
without specifying how the opera-
tion is performed. This goes along
nicely with the notion of separating
interface from implementation. If,
for example you have a method
CalculateSquareRoot that (not sur-
prisingly) calculates the square
root for a number, the Post-
Condition can be formulated as
Value = Result * Result, where Value
is the input parameter.

A pre-condition states how we
expect the world to be, before per-
forming a certain method. So in our
square root example the pre-

condition could be Value >= 0. This
pre-condition expresses the fact
that it is illegal to call the
CalculateSquareRootmethod with a
negative value. Whoever calls this
method with an illegal argument is
breaking the contract. Therefore, it
is the caller’s responsibility to
never call CalculateSquareRoot
with a negative number. But whose
responsibility is it to assert that
this does not happen?

A naive first guess might be to
put the burden on the caller, since
it is his responsibility to adhere to
the defined contract. But if every
caller has to assert the pre-
condition this leads to a duplica-
tion of code which is clearly not
desirable. Therefore, it is best to
assert the pre-condition in the
method for which it is defined.
Note that this doesn’t mean the
calling code must not check that it
doesn’t break the contract, it
simply means that the contract is
enforced by the method for which
an assertion is defined.

Phew, that sounds rather
abstract! So let’s look at the square
root example in Delphi. Please note
that this first example is rather
trivial and the post-condition espe-
cially is not very helpful in this sce-
nario, therefore I’ve omitted it from
the example. We will see a more
realistic example later in this arti-

cle. Listing 1
shows the code
for a simple form
shown in Figure
1. All that this
masterpiece of

modern programming does, is to
calculate the square root from the
value entered into the TEdit
edtValue, when the user clicks the
Calculate button, and showing
the result in the second TEdit
edtResult.

On the first line of CalcSquare-
Root we see the Assert for the
pre-condition. On the second line
the actual calculation is per-
formed. Now let’s look at the code
that calls this method: In btnCalc-
Click we call CalcSquareRoot by
passing the value of the Text prop-
erty converted into a float. Notice
that no code is included that
insures the value we pass is a valid
number and that it adheres to the
contract defined by CalcSquare-
Root.

Let’s compile the code with
assertions turned on for the pro-
ject. (Note: if you have previously
compiled the project successfully,
you will have to rebuild the project,
since changing compiler settings
in the Project Options dialog will
not force a recompile.) You can
easily check whether your Assert
code is active by simply looking at
the respective line in the Delphi
editor. The presence of the little
diamond on the left side shows
you whether code for your Assert
statement has been created (see
Figure 2). If you run the progam
and enter non-negative numbers,
(not surprisingly) all works fine.
Since we don’t do any checking
with the entered text, the program

type
TForm1 = class(TForm)
edtValue: TEdit;
btnCalc: TButton;
edtResult: TEdit;
lblEquals: TLabel;
procedure btnCalcClick(Sender: TObject);

private
function CalcSquareRoot(AValue: Extended): Extended;

public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
function TForm1.CalcSquareRoot(AValue: Extended): Extended;
begin
Assert(AValue >= 0,'Pre-Condition failed: value must be >= 0');
Result := Sqrt(AValue);

end;
procedure TForm1.btnCalcClick(Sender: TObject);
begin
edtResult.Text := FloatToStr(CalcSquareRoot(StrToFloat(edtValue.Text)));

end;
end.

➤ Listing 1

➤ Figure 1

58 The Delphi Magazine Issue 61

is not very robust, though. Let’s
enter a negative number and see
what happens. As soon as you click
the Calculate button, an error mes-
sage (as shown in Figure 3) pops
up. This error message basically
tells you that the contract for
CalcSquareRoot has been violated
by the caller. In our simple exam-
ple it is easy to find the offending
code to remedy the situation. In
more involved programs you
usually need the help of the
debugger to find the offending
caller by looking at the stack trace.

Before we fix our code to cor-
rectly use CalcSquareRoot accord-
ing to the contract, let’s first check
what happens when we run a
version of our program with
assertions disabled. With positive
values we still get the same results.
But what happens when we enter
some negative number? We still get
an exception, but this time the
message is very different (see
Figure 4). There is no clue on what
exactly went wrong and where it
did happen. A user of your pro-
gram would just not be very happy
about this sort of error and sadly
turns away to use his or her good
old solar-powered minicalculator
you gave them as a present!

Now let’s improve our code to
include the necessary checks to
make sure we honour the contract.
Listing 2 shows the corrected ver-
sion. As you can see, there is quite
some checking done. First of all, we
ensure that only numbers are pro-
cessed. We do this by trying to con-
vert the string into a float in a
try..except block. If this step was
successful, we then perform the
necessary check to adhere to the

contract defined by CalcSquare-
Root. This guarantees that we can
safely call the method. Remember
what we stated earlier: it is the call-
er’s burden to perform the neces-
sary checks prior to calling the
CalcSquareRoot method. The Calc-
SquareRoot method itself only
asserts that the contract is hon-
oured and throws an exception if a
caller fails to comply.

As we mentioned earlier, failing
to comply to the contract is consid-
ered a programming error that
should be removed during testing
and debugging! In other words: it
should never happen that an
assertion fails during execution of
a released program. And that’s
why you can turn them off for your
release build. Some people may
now argue that the fact that some-
thing shouldn’t happen doesn’t
actually mean it won’t happen and

that it is, therefore, better to build
even your final release with
assertions enabled. Personally, I
don’t think that this is true. Under
the assumption that you conse-
quently use assertions for critical
code and that you do serious
regressive unit testing (we all do
that, don’t we!), you should be able
to reduce breaching code (ie code
that breaks the contract) to zero.
You can and should use assertions
in your beta releases, but your
final product must be reliable
enough to run safely without
assertions turned on!

Invariants
There is one sort of Assertion that
we have not explained so far: the
so-called invariant. Simply put,
invariants are assertions that are
always true for all objects of the
class that defines them. ‘Always’
just means that whenever an
operation on an object can be
performed, the invariant must be
true. In practice this means
that invariants become part of the

➤ Above: Figure 2 ➤ Below: Figure 3

function TForm1.CalcSquareRoot(AValue: Extended): Extended;
begin
Assert(AValue >= 0,'Pre-Condition failed: value must be >= 0');
Result := Sqrt(AValue);

end;
procedure TForm1.btnCalcClick(Sender: TObject);
var
Value: Extended;

begin
try
Value := StrToFloat(edtValue.Text);

except
on EConvertError do begin
ShowMessage('Please enter a numerical value');
Exit;

end;
end;
if Value < 0 then begin
ShowMessage('Square Root for a negative number is not defined!');

end else begin
edtResult.Text := FloatToStr(CalcSquareRoot(Value));

end;
end;

➤ Above: Listing 2 ➤ Below: Listing 3

const
S_PreFailed = 'Pre-Condition failed: ';
S_PostFailed = 'Post-Condition failed: ';
S_InvFailed = 'Invariant-Condition failed: ';

➤ Figure 4

60 The Delphi Magazine Issue 61

pre- and post-conditions of all
public methods of the class. Unfor-
tunately this sort of assertion
cannot be dealt with automatically
in Delphi. If you want to use
invariants, you have to manually
ensure that they are checked in
each public method as part of the
contract of the respective meth-
ods. You can alleviate the problem
a little by providing a special
method that you can call from the
body of your methods. You should
name the method consistently, eg
AssertInvariants. It is also a good
idea to declare the method in the
protected section of your class

definition, so subclasses may use it
in their own code to ensure consis-
tent behavior with your class. You
may even want to declare the
method virtual, in order for sub-
classes to be able to refine the
invariants. We will look at the use
of assertions in the context of
inheritance and the inflicted chal-
lenges that come with it in a
moment. It is worth noting that
using a special AssertInvariants
method provides better consis-
tency and reduces the duplication
of Assert code in the class. There is
one drawback with this approach
though. Even if you build your code
without assertions enabled, the
AssertInvariants method still gets

called, even though the Assert pro-
cedure in the body of the method
itself is never executed. I have
found this slight overhead not to
be a problem for any normal appli-
cation. Things may be different for
very performance critical code
and you might want to adopt a
different strategy under these
circumstances.

Assertions In Action
Let’s look at Listing 4, which
presents a more complete and
slightly more complex example of
using assertions in various situa-
tions. The class TSimpleAccount
describes a very basic Account
object with very little useful

unit listing4;
interface
uses
classes;

type
{ forward declarations }
TAccountLine = class;
TSimpleAccount = class
private
FBalance: Currency;
FBalanceCalculated: Boolean;
FLines: TList;
function CalculateBalance: Currency;
function GetBalance: Currency;
function GetAccountLine(Index: Integer): TAccountLine;
function GetLineCount: Integer;

protected
function InternalGetAccountLine(Index: Integer):
TAccountLine;

procedure AssertInvariants; virtual;
public
constructor Create;
destructor Destroy; override;
function AddLine(const Text: string; Amount: Currency):
TAccountLine;

property Balance: Currency read GetBalance;
property Lines[Index: Integer]: TAccountLine
read GetAccountLine;

property LineCount: Integer read GetLineCount;
end;
TAccountLine = class
private
FText: string;
FAmount: Currency;
procedure SetText(const Value: string);

public
constructor Create(const AText: string; AAmount:
Currency);

property Text: string read FText write SetText;
property Amount: Currency read FAmount;

end;
implementation
uses
contnrs;

{ TSimpleAccount }
function TSimpleAccount.AddLine(const Text: string; Amount:
Currency): TAccountLine;
procedure AssertPre;
begin
AssertInvariants;
Assert(Length(Text) > 0,S_PreFailed +
'Length(Text) must be > 0');

Assert(Amount<> 0,S_PreFailed + 'Amount must be <> 0');
end;
procedure AssertPost;
begin
AssertInvariants;
Assert(Assigned(Result),
'Result does not contain a valid AccountLine object');

end;
begin
AssertPre;
Result := TAccountLine.Create(Text,Amount);
FLines.Add(Result);
AssertPost;

end;
procedure TSimpleAccount.AssertInvariants;

begin
if FBalanceCalculated then begin
Assert(FBalance = CalculateBalance,S_InvFailed +
'Balance out of Sync');

end;
end;
function TSimpleAccount.CalculateBalance: Currency;
var
I: Integer;

begin
Result := 0;
for I := 0 to Pred(LineCount) do begin
Result := Result + InternalGetAccountLine(I).Amount;

end;
end;
constructor TSimpleAccount.Create;
begin
FLines := TObjectList.Create(True);

end;
destructor TSimpleAccount.Destroy;
begin
FLines.Free;
inherited Destroy;

end;
function TSimpleAccount.GetAccountLine(Index: Integer):
TAccountLine;
procedure AssertPre;
begin
AssertInvariants;
Assert((Index > -1) and (Index < LineCount),
S_PreFailed + 'Index must be > -1 and < Count');

end;
begin
AssertPre;
Result := InternalGetAccountLine(Index);

end;
function TSimpleAccount.GetBalance: Currency;
begin
if not FBalanceCalculated then begin
FBalance := CalculateBalance;
FBalanceCalculated := True;

end;
Result := FBalance;

end;
function TSimpleAccount.GetLineCount: Integer;
begin
Result := FLines.Count;

end;
function TSimpleAccount.InternalGetAccountLine(
Index: Integer): TAccountLine;

begin
Result := FLines[Index];

end;
{ TAccountLine }
constructor TAccountLine.Create(const AText: string;
AAmount: Currency);

begin
FText := AText;
FAmount := AAmount;

end;
procedure TAccountLine.SetText(const Value: string);
begin
FText := Value;

end;
end.

➤ Listing 4

September 2000 The Delphi Magazine 61

implementation. Its only purpose
is to illustrate the use of Assertions
in a more realistic scenario. A
TSimpleAccount instance uses a list
of TAccountLine objects that repre-
sent the individual lines that make
up an account. Each AccountLine
object consists of a Text string and
an Amount. You can add a new
AccountLine to an Account by using
the AddLine method of TSimple-
Account. Let’s look at the imple-
mentation of that method.

As you can see, the checks for
the pre- and post-conditions are
factored out in to local procedures
named Assert- Pre and AssertPost
respectively. Again, this intro-
duces the slight overhead of addi-
tional method calls, but it
improves the readability of the
code tremendously. If I have a
choice, I always favour readability
and understandability of code over
sheer speed of execution. Com-
puters do get faster, on the other
hand, I seem to get slower at com-
prehending with every day pass-
ing! So I do myself a favour and try
to write readable and easily under-

standable code. The AssertPre first
calls Assert- Invariants to make
sure no invariant condition gets
violated. Next, we check the input
parameters and make sure, we
have a non-empty variable and an
amout value that is not 0.

You may have noticed that I am
using constant values for the mes-
sage string to distinguish the differ-
ent types of assertions. These
constants are defined as shown in
Listing 3. The actual method code
is a no-brainer. We simply create a
new TAccountLine object and add it
to the internal list. Finally, we

call AssertPost. Here we do two
things. First, we again call
AssertInvariants to make sure our
call didn’t change the object state
in a way that violates any Invariant
defined for instances of our class.
Then we make sure that the Result
we return to our caller actually
contains an object reference.
While this seems a silly thing to do
in this simple scenario, I have
included this test to protect my
code from failing without notice
through future ‘enhancements’.

procedure TFrmAccountTest.AddNewLine(const Text: string; Amount: Currency);
var
Line: TAccountLine;

begin
Line := FAccount.AddLine(Text,Amount);
ListBox1.Items.AddObject(Line.Text,Line);

end;
procedure TFrmAccountTest.FormCreate(Sender: TObject);
begin
FAccount := TSimpleAccount.Create;
{Let's add some Account Lines}
AddNewLine('Test Entry',150);
AddNewLine('Another Entry',-100);
AddNewLine('Entry # 3',300);
{now lets calculate the balance}
edtBalance.Text := FloatToStr(FAccount.Balance);
{Ok, lets add another Account Line}
AddNewLine('Big badaboom',50);

end;

➤ Listing 5

62 The Delphi Magazine Issue 61

Maybe someday I will come up with
some clever sort of caching or
reuse scheme that may reuse an
exsiting TAccountLine object or
create a new one if necessary. It is
easy to write code that breaks the
initial implementation and there-
fore fails to perform as intended.
The simple check in AssertPost
helps me spot this kind of trouble.
(Note that the test is not foolproof.
There is still the possibility that
Result contains an illegal object
reference. I leave it as an exercise
to the reader, to implement a
bullet-proof version of that code!)
Now lets have a look at the Assert-
Invariants method. You will notice
that the Assert is only performed
when FBalanceCalculated is True.
This has to do with the fact that we
cache the Balance value, so we
don’t have to recalculate it every
time we access the Balance prop-
erty (see the implementation of
GetBalance for details). If FBalance-
Calculated is True our invariant
must be checked to ensure our
cached value is in synch with the
actual total amount of our
AccountLines. I added this invariant
to make sure my class works as
intended and that I do not intro-
duce behaviour that breaks the
contract.

Let’s use our TSimpleAccount
with a simple form that does noth-
ing more than create a single
SimpleAccount instance and then
adds some AccountLines and dis-
plays them in a ListBox and the
account balance in a TEdit. Listing
5 shows the relevant code. As you
can see, after creating the Account
object we add three AccountLines,
then we calculate the balance and
then we add another AccountLine.
The actual code that adds the
AccountLine both to the Account
object and the ListBox is in

the AddNewLine method. Now, if you
run this code, you are in for a sur-
prise. The adding of another
AccountLine after we have calcu-
lated the balance results in an
error as shown in Figure 5.

What went wrong? Obviously,
our invariant failed. But where and
why did this happen? A debug ses-
sion reveals that the problem is in
the AddLine method of TSimple-
Account. While the invariant holds
true as part of the pre-condition, it
fails during verification in the
post-condition. So clearly our
AddLine method is violating the
contract. Well, we didn’t do that
much after all. We simply added
another AccountLine. And that is
the culprit. Since the GetBalanace
method was called from one of our
clients via our Balance property,
the Balance value got calculated
and cached. By adding another line
this cached value becomes obso-
lete and needs to be recalculated,
but we fail to tell our class to do so.
Fortunately the violation of our
invariant reveals the problem and
we can now easily fix it by setting
FBalanceCalculated to False after
adding the new AccountLine object.
Listing 6 shows the corrected
method.

The rest of the code in Listing 4
shows some additional uses of
assertions. You may have noticed
that in some methods I use pre-
conditions but no post-conditions
while still in other methods there
are no assertions at all. As for
pre-conditions, you normally
include them to ensure the
Invariants or you check on the
input parameters. There are rare

cases where it is not worth check-
ing the invariant. This happens
when you have very few and very
simple invariants and your
method performs tasks that estab-
lish the desired object state, so the
invariant can be met. But then
again, be careful to not forget to
check whether it is necessary to
include the invariant check into
your method’s body when your
invariants grow. You may find it
better to always include a
pre-condition that performs the
necessary invariant test. If you
have a method that doesn’t alter
the state of your object, you can
usually omit the post-condition,
unless you want to ensure the
result does conform to specific
rules, as we did in our AddLine
method of TSimpleAccount.

Assertions And Inheritance
So far, we have only used
assertions in non-derived classes.
So let’s briefly touch on the subject
of inheritance and the use of pre-
conditions, post-conditions and
invariants when subclasses are
involved.

From a theoretical point of view,
assertions play a very important
role when it comes to subclassing.
Due to the nature of polymor-
phism, it is possible for a subclass
to override a method in way that is
inconsistent with the baseclass’s
protocol. The strict use of asser-
tions prevents this. Invariants and
post-condition are valid for all sub-
classes. A subclass may tighten
invariants or post-conditions, but
it may not loosen them. On the
other hand a subclass may not
strengthen any pre-condition. As
counter-intuitive as this may
sound at first, it is very important
to allow dynamic binding and the
proper functioning of polymor-
phism. If a subclass does
strengthen a pre-condition, this

function TSimpleAccount.AddLine(const Text: string;
Amount: Currency): TAccountLine;
...

begin
AssertPre;
Result := TAccountLine.Create(Text,Amount);
FLines.Add(Result);
// make sure Balance gets recalculated
FBalanceCalculated := False;
AssertPost;

end;

➤ Listing 6

➤ Figure 5

September 2000 The Delphi Magazine 63

could lead to the failure of an oper-
ation on the subclass even though
it would work for the superclass.
This would break a fundamental
principle of object orientation that
states that you may safely use a
more special class everywhere a
more general class (ie a super-
class) is permitted.

So much for the theory. Unfortu-
nately it is very cumbersome to use
assertions together with inheri-
tance in Delphi, as in any other lan-
guage that doesn’t support
assertions as part of the class dec-
laration. In order to being able to
successfully use assertions with
subclassing, you need to establish
strict conventions that govern the
way assertions are implemented
and used. And as with any conven-
tion, the whole scheme breaks
down if only once you fail to
comply.

Final Remarks
On Using Assertions
I hope I was able to show you the
benefits of using assertions in your
code to establish simple contracts
that you can use to thoroughly test
your programs and add expressive
power to your code. When people
start working with assertions they
often tend to overuse them at first.
It doesn’t make sense to check for
every possible combination. A
good assertion makes your code
more understandable. Overusing
assertions usually leads to dupli-
cated code and ultimately is more

obfuscating than helpful. It may
even hinder future modifications!
A simple test to see whether an
assertion makes sense or not is
this: ask yourself whether the code
works, if the assertion fails. If it
does, remove the assertion,
because you don’t need it. Also
beware of duplicate code in
assertions. It is just as bad in an
assertion as it is in any other code.

Assertions And Subclassing:
A Possible Solution
One problem when using asser-
tions with subclassing is the possi-
ble duplication of Assert code.
Since invariants and post-
conditions may only be strength-
ened in subclasses, you must
ensure that any derived class will
honor all the assertions of all base
classes. On the other hand, pre-
conditions may be loosened by
your subclass and must be able to
prevent the evaluation of any
pre-condition of your super-
classes.

Clearly if you include the asser-
tions in the method body you are in
trouble for both pre-conditions
and post-condtitions, because the
verification and the execution of an
inherited method form an indivisi-
ble unit. You can’t execute one
without the other. As we have seen
with invariants, we can factor out
the Assert code into its own
method, so we can call it from
within our class wherever need be
and even override it to extend it in

a subclass. You can use the same
approach for pre- and post-
conditions. As with the Assert-
Invariants method we used in our
example your pre- and post-
condition checks should reside in
protected virtual methods. You
should give all your Assert meth-
ods an expressive name and it
might be a good idea to use some
sort of prefix like Assert to clearly
distinguish these methods from
‘normal’ code. You must also be
careful not to inadvertently
tighten a pre-condition or loosen-
ing a post-condition or invariant.
Note also that this approach uses a
lot of conventions. If you abandon
it only once, you have given your-
self away to the dark side of the
force...

Sascha Frick is an independent
coach and trainer for object orien-
tation. He hears himself repeating
the sentence ‘All data should be
declared private in a class’ all too
often during code reviews. In his
all too sparse spare time he loves
to watch good movies and eat
Italian food that he loves cooking
himself. He can be reached via
email at saschaf@empros.ch

	Assertions: Pre-Conditions, Post-Conditions
	Invariants
	Assertions In Action
	Assertions And Inheritance
	Final Remarks On Using Assertions
	Assertions And Subclassing: A Possible Solution

